

U.S. Army Institute of Surgical Research

Monitoring Trauma Patients in the Prehospital and Hospital Environments: The Need for Better Monitors and Advanced Automation

José Salinas, PhD jose.salinas4@us.army.mil 210-916-0806

Combait Casuality Care

Research for the Soldier

maintaining the data needed, and c including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar	o average 1 hour per response, includion of information. Send comments is arters Services, Directorate for Information of law, no person services.	egarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 05 APR 2008		2. REPORT TYPE		3. DATES COVE 00-00-2008	RED 3 to 00-00-2008	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Monitoring Trauma Patients in the Prehospital and Hospital Environments: The Need for Better Monitors and Advanced Automation					5b. GRANT NUMBER	
Environments: The Need for Detter Mointors and Advanced Automation				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)			5d. PROJECT NUMBER			
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Institute of Surgical Research, Fort Sam Houston, TX, 78234 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Army Telemedicin		es 2008: ?Personal H	lealth Monitoring	g?, Seattle, W	/A, 5 Apr 2008	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	31	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Background

- Diagnosis in the prehospital and/or hospital environments is often inaccurate for trauma patients
- Current prehospital monitors measure vital signs that are not predictive of outcome in many instances
 - Systolic Blood Pressure
 - Heart Rate
 - SpO2

Standard Vital Signs

Grouped Vital Signs Do Not Predict Need for Life Saving Interventions

- Considered 3 data sets based on instrument requirements
 - Manual (MG)
 - Serni-Automated (SG)
 - Automated (AG)

Letismotu/A	Group
--------------------	-------

- Electronic monitor
 - Automated NIBP (Systolic, Diastolic)
 - · Heart Rate
 - · EICO,
 - Automated
 Respiration Rate

betamotuA-imeë quore

GCS Eye SpO,

Manual Group

- Demographics (Age, Sex)
- Pulse Character (Radial, Femoral, Carotid)
- GCS Motor, GCS Verbal
- Capillary Refill

Problem

Manual Vital Signs Physical Exam

Electronic Vital Signs

No difference in prediction of outcome

Triage Problem

· Civilian:

- Consistent overtriage and undertriage problem in the prehospital trauma environment
- Not unusual to have a 50% overtriage within a large urban area

· Military:

 Inability to effectively predict evacuation requirements balanced with tactical considerations

Cause:

Inability to accurately determine patient status using current methodologies/technologies.

Environment: Medic Injured Trying to Save Fallen Comrade

Bottom Line

Current monitors present data that is not predictive of eventual physiologic decompensation and are thus inadequate!

Solution

We need a new type of monitor!

- Requirements
 - -Accurate diagnosis of patient status
 - -Small/Lightweight
 - -Remote/wireless operation
 - Intelligent Decision assist technology
 - Autonomous/closed loop technology for long term care

Accurate Diagnosis of Trauma Patients

- Need to use new/advanced vital signs
 - Pulse Pressure
 - Shock Index
- Explore combinations of vital signs to enhance probability of correct diagnosis
- Make use of vital sign trends
- Use characteristics of high frequency waveforms
 - Heart Rate Variability
 - Heart Rate Complexity
 - Non Linear ECG Dynamics

Pulse Pressure

 Statistically significant for tracking stroke volume

Combination Vital Signs

Combination of Shock Index, Shock Index Trend, Respiratory Rate

Waveform HR variability

Measures Sympathetic/Parasympathetic activity based on the frequency distribution of the RRI values.

Waveform Complexity

Quantifies the regularity of the HR signal through entropy calculations with in the RRI values.

Addition of more parameters

•	<u>Parameter</u>	Survival ROC
•	Single Vital Signs	0.75
•	Physiology and Trends	<mark>08.0</mark>
•	Physiological Variability	0.35
•	Physiology, Coagulation	, <mark>0.95</mark>
	and Immunology	

 The more Significant data we get, the more predictive we can be!

Problem

 Monitoring can be enhanced to further improve patient care...However:

"We keep monitoring patients to death"
-- Anonymous

Now What?

- Use enhanced prediction algorithms and inputs into intelligent medical systems to better assist medical providers
 - Decision Support Systems
 - Advanced Triage Systems
- Move validated medical systems into full automation for closed loop care of patients

Decision Assist (support) Technology

- Decision support systems are a class of computer-based information systems that support decision making activities
 - Type of intervention
 - What intervention to use based on the expertise of the user
 - When do we apply intervention?
 - Where should a patient be taken based on readings?
 - Where should a patient be transported to?

Benefits

- Helps to remind experts on proper patient care during critical procedures and/or mass casualty situations
- "Pushes" the expertise built into the software to non-expert providers
 - i.e. burn standard of care procedures for field use
- Maintains the open loop concept Not a replacement for good clinical judgment

Types of DSS

Model Driven

- Used for statistical data manipulation
- Example: Expected response of a company's stock to a selloff
- Communication Driven
 - Used for coordination of tasks between users
- Data Driven
 - Used for manipulation of time series data
- Document Driven
 - Manipulation of unstructured information from documents
- Knowledge Driven
 - Most appropriate for medical systems
 - Emphasizes problem solving skills

USAISR DSS Examples

ICU DSS Framework

- Decision support framework for management of burn patients admitted to the USAISR Burn Center ICU
 - Resuscitation Implemented
 - Tight glucose control Implemented
 - Hypotension management Working
 - Alburnin use Working
 - Abdorninal compartment syndrome diagnosis and rnanagement - Working

Mobile Burn Resuscitation

 Decision support for burn resuscitation in a mobile/handheld system for field resuscitation

Automation and Closed Loop

- Use accurate inputs to control therapy for patient care
 - Examples:
 - Resuscitation
 - Ventilation
 - Pain Control
 - Hemorrhage
- Feedback system allows for more accurate delivery of therapy

Action Shots of DSS (ICU Version)

Action shots of DSS (Mobile)

The Future

- Full Automation
 - -Closed loop
 - Computer control of sensors and actuators
 - -Automated patient management

Lightweight Trauma Module (LTM), Impact Instrumentations

AED

Temperature

Integral

- Ventilator
- 12-lead ECG
- Pulse-Ox
- NIBP
- Data I/O
- Electronic med.

Modules

- Aspirato
- I.V. pumps
- Multipatient monitor (SpO₂, ECG, NIBP)
- Patient controlled analgesia
- Spirometer
- O₂ concentrator
- Patient warming
- Stress test
- Anesthesia Module
- Ultrasound imaging
- Visualization
 - Oto/opthalmoscope
 - macrolens camera

- Respiratory mechanics
- Pulse Pressure, Shock Index, HRV

Wireless Vital Signs Monitor (WVSM), Athena GTX

Hourly Urinary Outputs:

on-target, under-target and over-target

Group	on-target	under- target	over-target
Tech Control 11 sheep, 508 measurement S	198 40%	122 25%	175 35%
CLR controlled 10 sheep, 475 measurement s	214 47% p = 0.23 1.31 (Cl 0.85, 2.0)	73 16% p = 0.02 0.58 (CI 0.38, 0.89)	173 38% p = 0.65 1.10 (Cl 0.74, 1.65)

Conclusion

- Need better monitoring technologies
 - New vital signs
 - Combinations of standard, new, and trended vital signs
 - Advanced complexity vital signs
- Need to develop decision support systems
 - Additional tools to expert users
 - Better care for non-expert care providers
 - Open loop concept
- Future: Closed loop and automation
 - Computer control of sensors and actuators

QUESTIONS?

OUR SERVERS ARE USING TOO MUCH ELECTRICITY. WE NEED TO VIRTUALIZE.

© Scott Adams, Inc./Dist. by UFS, Inc.

I DID MY PART BY READING ABOUT VIRTUALIZATION IN A TRADE JOURNAL. NOW YOU DO THE SOFTWARE PART.

e 2008 Scott Adams, Inc./Dist. by UFS, Inc.

